miércoles, 22 de mayo de 2013

CORTERRA

Corterra PTT es el nombre de la marca Shell por los poliésteres aromáticos conocidos como politrimetilentereftalato (PT) se producen por la reacción de policondensación de ácido tereftálico purificado (PTA) y 1,3-propanodiol (PDO). PTT compite con los otros poliésteres aromáticos - tereftalato de polietileno (PET) , así como con nylon Corterra PT se utiliza en:
·    Las fibras para alfombras y textiles                                                                                                ·   Telas no tejidas      
Otras aplicaciones emergentes, incluyendo termoplásticos monofilamento, el cine y la ingeniería (PTE).   PTT reduce en gran medida la cantidad de acroleína generado durante la descomposición térmica del polímero.Esta estabilización es eficaz a temperaturas muy por encima de la temperatura de fusión y es activa durante días a estas temperaturas. .Las propiedades únicas de PTT se conocen desde hace muchos años, pero el polímero no ha sido comercialmente disponible debido al alto coste de producción de la materia prima DOP. Extensive research efforts has resulted in a cost-effective process to manufacture PDO. Esfuerzos Numerosas investigaciones han dado lugar a un proceso rentable para la fabricación de PDO. Con este avance en la tecnología de procesamiento para DOP, Polímeros Corterra están ahora disponibles comercialmente para uso en alfombras y textiles fibras monofilamento, película, tela no tejida, y las aplicaciones termoplásticas de ingeniería.                        
 Corterra 200 puede ser utilizado por sí mismo, como el polímero de base para los compuestos, o como un modificador de polímero para muchas aplicaciones termoplásticas de ingeniería. Combinación de resinas de ingeniería basado en polímero de PTT Corterra proporcionan propiedades físicas que son equivalentes o mejores que las de los compuestos PBT similares. Características de extrusión y las condiciones de moldeo por inyección, y el procesamiento son muy similares a los establecidos para PBT. Compuestos de PTT generalmente exhiben mayor resistencia a la tracción, módulo de flexión y las temperaturas de deflexión térmica pero con resistencia al impacto ligeramente inferior a los homólogos PBT.
Corterra polímero es un poliéster aromático conocido genéricamente como PTT, trimetileno tereftalato). PTT es producida por la reacción de policondensación de la PTA (ácido tereftálico purificado) y PDO (1,3-propanodiol) y tiene propiedades únicas en comparación con los otros poliésteres aromáticos, PET (tereftalato de polietileno) y PBT (tereftalato de polibutileno).                                                                           
Las propiedades únicas de PTT se conocen desde hace muchos años, pero el polímero no ha sido comercialmente disponible debido al alto coste de producción de la materia prima DOP ha dado lugar a un proceso rentable para la fabricación de PDO.
 Con este avance en la tecnología de procesamiento para DOP, Polímeros Corterra están ahora disponibles comercialmente para uso en alfombras y textiles fibras monofilamento, película, tela no tejida, y las aplicaciones termoplásticas de ingeniería.                                                                                                                                
 Las propiedades de los polímeros que proporcionan resistencia, la recuperación elástica, de alta a granel, de la mano suave, resistencia a las manchas inherente, y la facilidad de tintura, lo hacen muy adecuado para las fibras textiles y alfombras.
  Corterra 9240 ha TiO2 añadido como un agente de pérdida de brillo y se utiliza cuando un lustre brillante o brillante no se desea en el producto final. Muchas de estas mismas propiedades hacen Corterra 9240 un buen candidato para aplicaciones no tejidas.


NANOFIBRA

Una nanofibra es una fibra polimérica con diámetro inferior a 500 nanómetros. Se obtienen a partir de técnicas especiales que permiten obtener esas fibras ultrafinas, de propiedades muy particulares y de muy diversos usos.
Obtención                                                                                                                                                   Un proceso convencional para obtener fibras comunes consiste en el hilado en el que un polímero fundido o en solución se hace pasar por una boquilla a cierta velocidad y temperatura. Además se estira el material buscando darle más módulo y resistencia. Pero para obtener una nanofibra, se utiliza lo que se llama electrohilado (electrospinning), que permite producir filamentos continuos cien veces inferiores a los métodos convencionales  . Dichos filamentos se depositan en una membrana o malla no tejida llamada material nanofibroso.
PROPIEDADES:En el material nanofibroso la relación superficie-volumen es muy elevada. Las estructuras obtenidas generan sistemas dinámicos que pueden variar tanto el tamaño de los poros como la forma. Las propiedades de flexibilidad, tenacidad y resistencia a la tracción son imposibles de conseguir con otros materiales de estructuras convencionales.
Aplicaciones                                                                                                                                      La baja densidad y elevado volumen de los poros hacen a estos materiales apropiados para dispositivos biomédicos como el sistema de liberación controlada de fármacos o la obtención de cosméticos
También para principios activos e ingeniería de tejidos; prendas de vestir, implementos de limpieza y hasta productos industriales de catálisis, filtrado, barrera y aislamiento, pilas, transistores, óptica, tecnología de la información y del sector espacial.



https://www.youtube.com/watch?v=8ImRzrUto54



MICRIFIBRA

Compuestas de 80% de poliéster y de 20% de poliamida.
Las microfibras tienen el diámetro medio de una fibra de seda, un tercio del diámetro de una fibra algodonera, un cuarto del diámetro de una fibra de lana y un centavo del diámetro del cabello humano.
Las microfibras
Estos paños son el resultado de una combinación de fibras (polyester y poliamida). El polyester es la fibra que le da firmeza y durabilidad al paño, mientras que la poliamida se encarga de la absorción. 100 veces más finas que el cabello humano, conforman una opcion ideal para tratar la carrocería sin dañarla.
Los tejidos de microfibra son extraordinariamente suaves e indeformables y poseen unas características muy ventajosas que son las siguientes:

  1. Tienen una gran capacidad de absorción (más o menos el doble que el algodón)
  2. Poseen una gran capacidad de limpieza
  3. Consumen menos agentes limpiadores
  4. Tienen una gran resistencia a los lavados frecuentes y se pueden lavar a temperaturas de hasta 95º (según marcas), lo que las hace sumamente higiénicas

Campos de aplicación de las microfibras:


  1. Imitaciones de cuero para la fabricación de abrigos, guantes o tejidos para muebles tapizados
  2. Ropa funcional (por ejemplo ropa de deporte o ropa de lluvia) de poliéster o poliamida con características como permeabilidad de vapor de agua (el sudor vaporea por los poros de tela), rápidamente secante, densidad de viento e hidrofugado
  3. Telas de limpieza de alto rendimiento que consumen menos agentes limpiadores
  4. Telas parecidas a la seda para la fabricación de ropa o ropa de cama

https://www.youtube.com/watch?v=UPXT9W7oFco


ALCOHOL DE POLIVINILO

El alcohol de polivinilo (PVOH, PVA, o PVal), también llamado polietenol o poli (alcohol vinílico), es un polímero sintético soluble en agua, de fórmula química general (C2H4O)n. No debe confundirse con acetato de polivinilo, un popular pegamento de madera.

A diferencia de muchos polímeros vinílicos, el PVOH no es preparado por la polimerización del correspondiente monómero. Dado que el alcohol vinílico es inestable con respecto a la isomerización a acetaldehído su polímero debe prepararse por métodos indirectos. El monómero, alcohol vinílico, existe casi exclusivamente en la forma tautoméricas, el acetaldehído. El PVOH se prepara por alcohólisis (se emplean también los términos menos exactos hidrólisis y saponificación) parcial o total de acetato de polivinilo para eliminar los grupos acetato.

Para efectuar la alcohólisis puede utilizarse etanol o metanol, con un ácido o una base como catalizador. La hidrólisis alcalina es mucho más rápida. La hidrólisis ácida es más probable que produzca algunos enlaces en la cadena por medio de un mecanismo que implica la pérdida de una molécula de agua de dos grupos hidroxilos adyacentes. Se trata de una reacción no deseable. La alcohólisis se lleva a cabo usualmente disolviendo el poli (acetato de vinilo) en el alcohol, añadiendo el catalizador y calentando. El poli(alcohol de vinilo) precipita de la disolución.
Se puede controlar esta reacción de modo que queden grupos acetato en el polímero. Lo que se obtiene entonces, es un copolímero de poli (alcohol vinílico) y de poli (vinil acetato) llamado poli (alcohol vinílico-co-vinil acetato). Es un copolímero al azar, parecido al poli (alcohol vinílico) excepto que cada tanto tiene unidades repetitivas de vinil acetato.

Esto confiere al polímero zonas hidrofílicas (grupos alcohol) y zonas hidrofóbicas (grupos acetato). Propiedad útil para elaboración de pinturas acrílicas de base acuosa. Esto permite que el poli metil metacrilato (PMMA) forme una suspensión puesto que no es soluble en agua formando un látex, de aquí la denominación de pinturas al látex. El polímero se enrolla, quedando los grupos alcohol hacia afuera (en contacto con el agua) y los grupos acetato hacia dentro (cubriendo la moléculas de PMMA).


Propiedades

El alcohol polivinílico tiene excelentes propiedades para formar películas, como emulsionante y como adhesivo. También es resistente al aceite, grasas y disolventes. Es inodoro y no tóxico. Tiene alta resistencia y flexibilidad, así como alta propiedades de barrera para el oxígeno y los aroma. Sin embargo, estas propiedades dependen de la humedad, es decir, con mayor humedad más agua es absorbida. El agua, que actúa como un plastificante, a su vez reducirá su resistencia a la tracción, pero aumentan su elongación y resistencia al desgarro. El PVOH es totalmente degradable y se disuelve rápidamente. El PVOH tiene un punto de fusión de 230°C y 180-190ºC para los grados totalmente hidrolizado y parcialmente hidrolizado respectivamente. Se descompone rápidamente por encima de 200°C. El poli (alcohol de vinilo) no funde como un termoplástico, sino que se descompone por pérdida de agua de dos grupos hidroxilos adyacentes a temperaturas superiores a 150°C. Los enlaces dobles permanecen en la cadena y, a medida que se forman más en posiciones conjugadas, tiene lugar una coloración importante.
Aunque el poli (alcohol de vinilo) es amorfo cuando no está estirado, puede estirarse dando una fibra cristalina por ser los grupos hidroxilo lo bastante pequeños para encajar en un retículo cristalino a pesar de la estructura de cadena atáctica.
El poli (alcohol de vinilo) es soluble en agua. Se disuelve lentamente en agua fría, pero lo hace más rápidamente a temperaturas elevadas, y puede normalmente disolverse a más de 90°C. Las disoluciones acuosas no son particularmente estables, especialmente si hay presentes trazas de ácido o base. Las disoluciones pueden sufrir una compleja serie de reacciones de gelación reversibles e irreversibles. Por ejemplo, puede producirse entre-cruzamiento en los enlaces éter, lo que resulta en un aumento de viscosidad por la formación de productos insolubles.
EI poli (alcohol de vinilo) puede reacetilarse por calentamiento con un exceso de anhídrido acético en presencia de piridina. El poli (acetato de vinilo) resultante puede o no tener la misma estructura que el polímero madre a partir del cual se obtuvo el alcohol, debido a la naturaleza de la estructura de cadena ramificada del polímero.
El coeficiente de Poisson se ha medido a entre 0,42 y 0,48.

Usos

El alcohol polivinílico es la materia prima para hacer otros polímeros como:
- Nitrato de polivinilo (PVN): Se trata de un éster del ácido nítrico y el alcohol de polivinilo.                       El nitrato de vinilo se puede utilizar en algunos propulsores y explosivos moldeables.
- Polivinil acetales: los poli(acetales de vinilo) se preparan por reacción de aldehídos con el alcohol de polivinilo. El polivinil butiral (PVB) y polivinil formal (PVF) son ejemplos de esta familia de polímeros. Se preparan a partir de alcohol de polivinilo, por reacción con butiraldehído y el formaldehído, respectivamente. La preparación de butiral de polivinilo es el mayor uso del alcohol polivinílico en los EE.UU. y Europa Occidental. El polímero más importante, por mucho, de entre ellos es el poli (vinil butiral), que se usa como capa plástica intermedia para los vidrios de seguridad de aviones y automóviles. El poli (vinil formal) se utiliza en esmaltes para recubrimientos de cables eléctricos y en tanques de gasolina de auto-sellado.
El alcohol polivinílico se utiliza como ayuda en la polimerización en emulsión, como coloide protector, para hacer dispersiones de acetato de polivinilo. Esta es la aplicación más grande del mercado en China.
En Japón, su uso principal es la producción de fibra vinylon o vinalon.
En las fibras de poli (alcohol de vinilo), la forma final del polímero es insoluble en agua como resultado de un tratamiento químico. El polímero se hila en húmedo a partir de agua caliente pasando por una disolución acuosa concentrada de sulfato de sodio que contiene ácido sulfúrico y formaldehído. El polímero se insolubiliza por la formación de grupos formal:
Aproximadamente una tercera parte de los grupos hidroxilo se hace reaccionar para insolubilizar la fibra. Un cierto grado de acetalización entre las cadenas es deseable para reducir la contracción de la fibra, pero debe controlarse cuidadosamente la cantidad.
Las fibras de poli (alcohol de vinilo) poseen una absorción de agua (un 30 %) su­perior a las demás fibras. Pudiendo de este modo reemplazar al algodón en aquellos usos en los que la fibra está en contacto con el cuerpo. El tacto del tejido puede variarse de similar a la lana a similar al lino. Esta fibra se lava fácilmente, se seca pronto y tiene buena estabilidad dimensional. La tenacidad y resistencia a la abrasión son buenas.
*Fibra de PVOH, como refuerzo en el concreto
*Se utiliza en protección guantes resistentes a químicos
*Se utiliza como fijador para la recogida de muestras, en especial las muestras de heces
*Como un agente de embolización en procedimientos médicos
* Excipiente, recubrimiento de pastillas, biofermentación y tópicos para productos farmacéuticos

 


Guantes de protección contra productos químicos con revestimiento de alcohol de polivinilo
SPANDEX
El elastano o spandex es una fibra sintética muy conocida por su gran elasticidad, inventada en 1959 por el químico Joseph Shivers, quien trabajaba para la compañía DuPont.
La empresa estadounidense DuPont patentó su invención en 1959 y le dio el conocido nombre de marca LYCRA®. La fibra LYCRA® es hoy propiedad de la empresa Invista. No es un tejido sino una de las fibras que componen un tejido. Sus propiedades son de dar elasticidad y mayor calidad que otros elastanos. La fibra LYCRA® es un elastano, pero no todos los elastanos son de marca LYCRA®.
Cuando se introdujo por primera vez, el elastano revolucionó muchas áreas de la industria textíl. Hoy en día es utilizado sobre todo en el ámbito deportivo gracias a su flexibilidad y ligereza. Es un polímero de cadena muy larga, compuesto con un mínimo del 85% de poliuretano segmentado (Spandex); obteniéndose filamentos continuos que pueden ser multifilamento o monofilamento.
El elastano se utiliza conjuntamente con otras fibras para fabricar tejidos óptimos para producir ropa interior, ropa femenina, calcetines. También esta presente en pantis y medias así como en ropa deportiva y en ropa de baño, ya que gracias a sus propiedades elásticas otorga libertad de movimientos a los deportistas que la utilizan.

Características principales del elastano


Ciclista vestido con un par prendas de elastano shorts y un jersey de ciclista
  • Puede ser estirado hasta un 600% sin que se rompa.
  • Se puede estirar gran número de veces y volverá a tomar su forma original.
  • Seca rápidamente.

  FIBRA DE CARBONO

Introducción

La fibra de carbono (fibrocarbono) es un material formado por fibras de 50-10 micras de diámetro, compuesto principalmente de átomos de carbono. Los átomos de carbono están unidos entre sí en cristales que son más o menos alineados en paralelo al eje longitudinal de la fibra. La alineación de cristal da a la fibra de alta resistencia en función del volumen (lo hace fuerte para su tamaño). Varios miles de fibras de carbono están trenzados para formar un hilo, que puede ser utilizado por sí mismo o tejido en una tela.
Las propiedades de las fibras de carbono, tales como una alta flexibilidad, alta resistencia, bajo peso, alta resistencia, tolerancia a altas temperaturas y baja expansión térmica, las hacen muy populares en la industria aeroespacial, ingeniería civil, aplicaciones militares, deportes de motor junto con muchos otros deportes. Sin embargo, son relativamente caros en comparación con las fibras similares, tales como fibras de vidrio o fibras de plástico, lo que limita en gran medida su uso.
Las fibras de carbono generalmente se combinan con otros materiales para formar un compuesto. Cuando se combina con una resina plástica es moldeada para formar un plástico reforzado con fibra de carbono (a menudo denominado también como fibrocarbono) el cual tiene una muy alta relación resistencia-peso, extremadamente rígido, aunque el material es un tanto frágil. Sin embargo, las fibras de carbono también se combinan con otros materiales, como por ejemplo con el grafito para formar compuestos carbono-carbono, que tienen una tolerancia térmica muy alta.

Historia

En 1958, Roger Bacon creó fibras de alto rendimiento de carbono en el Centro Técnico de la Union Carbide Parma, ahora GrafTech International Holdings, Inc., que se encuentra en las afueras de Cleveland, Ohio. Estas fibras se fabricaban mediante el calentamiento de filamentos de rayón hasta carbonizarlos. Este proceso resultó ser ineficiente, ya que las fibras resultantes contenían sólo un 20% de carbono y tenían malas propiedades de fuerza y ​ de rigidez. En la década de 1960, un proceso desarrollado por Akio Shindo de la Agencia de Ciencia Industrial Avanzada y Tecnología de Japón, con poliacrilonitrilo (PAN) como materia prima. Este había producido una fibra de carbono que contiene alrededor del 55% de carbono.
El alto potencial de la fibra de carbono fue aprovechado en 1963 en un proceso desarrollado en el Establecimiento Real de aeronaves en Hampshire, Reino Unido. El proceso fue patentado por el Ministerio de Defensa del Reino Unido y luego autorizada a tres empresas británicas: Rolls-Royce, Morganita y Courtaulds. Estas empresas fueron capaces de establecer instalaciones de producción industrial de fibra de carbono. Rolls-Royce se aprovechó de las propiedades del nuevo material para entrar en el mercado americano con motores para aviones.
Por desgracia, Rolls-Royce empujó el estado de la técnica demasiado lejos, demasiado rápido, en el uso de fibra de carbono en las aspas del compresor del motor de aviones, que resultó ser vulnerables a daños por impacto de aves. Lo que parecía un gran triunfo tecnológico en 1968 se convirtió rápidamente en un desastre. De hecho, los problemas de Rolls-Royce se hizo tan grande que la empresa fue nacionalizada por el gobierno británico en 1971 y la planta de producción de fibra de carbono fue vendida a la forma "Bristol composites".
Dado el limitado mercado para un producto muy caro, de calidad variable, Morganite también decidió que la producción de fibra de carbono era periférica respecto a su negocio principal, dejando Courtaulds como el único fabricante grande del Reino Unido. Esta compañía continuó la fabricación de fibras de carbono, con el desarrollo de dos mercados principales: el aeroespacial y de equipamiento deportivo. La velocidad de la producción y la calidad del producto se han mejorado desde entonces.
Durante la década de 1970, los trabajos experimentales para encontrar materias primas alternativas llevaron a la introducción de fibras de carbono a partir de una brea de petróleo derivadas de la transformación del petróleo. Estas fibras contenían alrededor de 85% de carbono y tenía una excelente resistencia a la flexión.

La fibra de carbono es un polímero de una cierta forma de grafito. El grafito es una forma de carbono puro. En el grafito los átomos de carbono están dispuestos en grandes láminas de anillos aromáticos hexagonales.

La fibra de carbono se fabrica a partir de otro polímero, llamado poliacrilonitrilo, a través de un complicado proceso de calentamiento. Cuando se calienta el poliacrilonitrilo, el calor hace que las unidades repetitivas ciano formen anillos.

Al aumentamos el calor, los átomos de carbono se deshacen de sus hidrógenos y los anillos se vuelven aromáticos. Este polímero constituye una serie de anillos piridínicos fusionados.

Luego se incrementa la temperatura a unos 400-600°C. De este modo, las cadenas adyacentes se unen:

Este calentamiento libera hidrógeno y da un polímero de anillos fusionados en forma de cinta. Incrementando aún más la temperatura de 600 hasta 1300ºC, nuevas cintas se unirán para formar cintas más anchas:

De este modo se libera nitrógeno. Como se puede observar, el polímero que es obtenido tiene átomos de nitrógeno en los extremos, por lo que, estas cintas pueden unirse para formar cintas aún más anchas. A medida que ocurre esto, se libera más nitrógeno. Terminado el proceso, las cintas son extremadamente anchas y la mayor parte del nitrógeno se liberó, quedando una estructura que es casi carbono puro en su forma de grafito.

Estructura y propiedades
Cada hilo de filamento de carbono es un conjunto de muchos miles de filamentos de carbono. Uno de estos filamentos es un tubo delgado con un diámetro de 5.8 micrómetros y se compone casi exclusivamente de carbono. La primera generación de fibras de carbono (es decir, T300 y AS4) tenían un diámetro de 7.8 micrómetros. Más tarde, se alcanzaron fibras (IM6) con diámetros que son aproximadamente de 5 micras.
Tela de fibra de carbono
La estructura atómica de la fibra de carbono es similar a la del grafito, que consiste en láminas de átomos de carbono (láminas de grafeno) dispuestos siguiendo un patrón hexagonal regular. La diferencia radica en la forma en que se vinculan las láminas. El grafito es un material cristalino en el cual las láminas se apilan paralelas entre sí de manera regular. Las fuerzas intermoleculares entre las láminas son relativamente débiles (fuerzas de Van der Waals), dando al grafito sus características blandas y quebradizas. Dependiendo del precursor para hacer la fibra, la fibra de carbono puede ser turbostráticas o grafíticas, o tienen una estructura híbrida con las partes presentes tanto en grafíticas y turbostráticas. En fibra de carbono turbostráticas las láminas de átomos de carbono se apilan al azar o en forma irregular. Las fibras de carbono derivadas del poliacrilonitrilo (PAN) son turbostráticas, mientras que las fibras de carbono derivadas de la brea de mesofase son grafíticas después del tratamiento térmico a temperaturas superiores a 2.200°C. Las fibras de carbono turbostráticas tienden a tener alta resistencia a la tracción, mientras que un tratamiento térmico en la brea de mesofase derivada en fibras de carbono con un alto módulo de Young (es decir, baja elasticidad) y alta conductividad térmica. 


Proceso de fabricación
Cada filamento de carbono es producido a partir de un polímero precursor. El polímero precursor es comúnmente rayón, poliacrilonitrilo (PAN) o una resina derivada del petróleo. Para los polímeros sintéticos como el rayón o el PAN, el precursor es primeramente hilado en filamentos, mediante procesos químicos y mecánicos para alinear los átomos de polímero para mejorar las propiedades físicas finales de la fibra de carbono obtenida. Las composiciones de precursores y de los procesos mecánicos utilizados durante el hilado pueden variar entre los fabricantes. Normalmente se mezcla el PAN con algo de metil acrilato, metil metacrilato, vinil acetato y cloruro de vinilo. Después de embutición o hilatura en húmedo (a veces también se emplea la técnica de hilado fundido), las fibras de polímero se calientan para eliminar los átomos que no sean de carbono (carbonización), produciendo la fibra de carbono final. Las fibras de carbono pueden ser sometidos a un tratamiento de mejorar las cualidades de manejo, luego son enrolladas en bobinas. Las bobinas se utilizan para suministrar a máquinas que producen hilos de fibra de carbono o tejido.
Un método común de la fabricación consiste en calentar los filamentos PAN en una atmósfera con aire (oxidación) a aproximadamente 300°C, que rompe muchos de los enlaces de hidrógeno y oxida la materia. El PAN oxidado se coloca en un horno que tiene una atmósfera inerte de un gas como el argón, y se calienta a aproximadamente 2000°C, lo que induce a la grafitización del material, cambiando la los enlaces de la estructura molecular. Cuando se calienta en las condiciones adecuadas, estas cadenas se unen una al lado de la otra, formando estrechas láminas de grafeno que con el tiempo se unen para formar un solo filamento cilíndrico. El resultado es generalmente 93-95% de carbono. Una baja calidad de fibra se pueden fabricar con brea de mesofase o rayón como precursor en lugar de PAN. Al material obtenido se le pueden variar algunas de sus propiedades, confiriéndoles alto módulo, o alta resistencia, mediante procesos de tratamiento térmico. El material que ha sido calentado de 1500 a 2000ºC (carbonización) exhibe la mayor resistencia a la tracción (820.000 psi , 5.650 MPa o N/mm²), mientras que la fibra de carbono calentada de 2500 hasta 3000°C (grafitización) muestra un alto módulo de elasticidad (77.000.000 psi o 531 GPa o 531 kN/mm²).

Aplicaciones La fibra de carbono se utiliza principalmente para reforzar materiales compuestos, para obtener materiales conocidos como plásticos reforzados con fibra de carbono (PRFC). Las tercnicas utilizadas para materiales poliméricos son: moldeo manual (hand lay up), espreado (spray lay up), pultrusión, bobinado de hilo, compresión, BMC, SMC, SCRIMP, RTM, etc. Los materiales no poliméricos también se puede utilizar como matriz de las fibras de carbono. Debido a la formación de metal carburos metálicos y corrosión, el fibrocarbono ha tenido un éxito limitado en aplicaciones de compuestos de matriz metálica. El RCC (carbono-carbono reforzado) se compone de refuerzo de fibrocarbono con grafito, y se utiliza estructuralmente en aplicaciones de alta temperatura. La fibra también tiene uso en la filtración de gases a alta temperatura, como electrodo de gran superficie e impecable resistencia a la corrosión, y como un componente anti-estático.
La demanda global de materiales compuestos de fibra de carbono se valoró en aproximadamente EE.UU. $ 10,8 mil millones de dólares en 2009, el cual disminuyó 10.8% respecto al año anterior. Se espera que llegue en EE.UU. a 13,2 mil millones de dólares en 2012 y que aumente a 18,6 mil millones de dólares en EE.UU. en 2015 con una tasa de crecimiento anual del 7% o más. Las demandas más fuertes provienen de las industrias aeronáutica y aeroespacial, de la energía eólica, así como de la industria automotriz.




POLIURETANO

El poliuretano (PUR) es un polímero que se obtiene mediante condensación de bases hidroxílicas combinadas con disocianatos. Los poliuretanos se clasifican en dos grupos, definidos por su estructura química, diferenciados por su comportamiento frente a la temperatura. De esta manera pueden ser de dos tipos: Poliuretanos termoestables o poliuretanos termoplásticos ( según si degradan antes de fluir o si fluyen antes de degradarse, respectivamente).[1] Los poliuretanos termoestables más habituales son espumas, muy utilizadas como aislantes térmicos y como espumas resilientes. Entre los poliuretanos termoplásticos más habituales destacan los empleados en elastómeros, adhesivos selladores de alto rendimiento, suelas de calzado, pinturas, fibras textiles, sellantes, embalajes, juntas, preservativos, componentes de automóvil, en la industria de la construcción, del mueble y múltiples aplicaciones más.
El poliuretano es un plástico obtenido por la reacción de poliol e isocianato en la presencia de catalizadores y aditivos. Los Poliuretanos son los polímeros mejor conocidos para hacer espumas, pero los poliuretanos son mucho más que espumas, los poliuretanos componen una de las familias de polímeros más versátiles que existen.
Dependiendo del poliol e isocianato empleado, se obtendrá una gran variedad de productos que son clasificados conforme a su estructura física en flexibles convencionales o “slab”, flexibles moldeados, rígidos, elastómeros, recubrimientos y adhesivos. Estas son las familias o segmentos de productos que utilizamos también para su control en la Industria del Poliuretano. Existe a su vez una clasificación para los elastómeros, recubrimientos y adhesivos conocida como CASE que viene de sus nombres en inglés Coatings Adhesives Sealants Elastomers.



Fibra Cationica

Polímero cationico La invención proporciona un polímero insoluble en agua, capaz de hinchar en agua, que comprende unidades derivadas de un monómero dialílico de sal de amonio cuaternario, reticuladas mediante un compuesto polifuncional de vinilo, apropiado, estando por lo menos una proporción sustancial de los grupos funcionales en forma básica.
Fibra de Celulosa Cationica 


Contiene entre 1 y 30 grupos catiónicos y entre 0,1 y 20 grupos aldehído por 100 unidades de anhidroglucosa es una base adecuada para la producción de productos de papel y el tejido sin la necesidad de utilizar polímeros catiónicos no biodegradables como aditivos de resistencia en húmedo. La fibra celulósico catiónico se puede obtener por oxidación de la fibra para introducir grupos aldehído, seguido de la reacción de una parte de los grupos aldehído con un reactivo que contiene nitrógeno tal como hidrocloruro de hidrazida de betaína. La fibra se combina ventajosamente con un polímero aniónico tal como carboxilo monoaldehıdo-almidón o con ciclodextrina aniónica.


VISTAS TRANSVERSALES